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Abstract: The real-time robust and secure operation of power systems has become a challenging task, as the operating state
evolves rapidly due to uncertainties associated with increasing renewable generation, less predictable loads, and various forms
of contingencies. Therefore, an online voltage stability assessment is required to avoid any undesirable system behaviours or a
large-scale blackout. Such evaluation is not just difficult but also computationally intensive mainly due to the continuously
changing state of a grid. This study presents a numerically robust and fast algorithm for online voltage stability assessment with
ease of implementation and programming. The proposed approach updates distance of voltage collapse in real-time by
incorporating base-case collapse point solution and incoming data from measurement devices. Implementation of the proposed
algorithm is described in detail, and its performance is validated on different IEEE test cases.

1 Introduction
Modern power systems are more vulnerable to instabilities as a
result of operational proximity with their loadability limits [1–3].
Factors such as heavy loading conditions, uncertainties from
renewable generation, load recovery dynamics, and different types
of contingencies like line tripping or generator outages have made
the secure operation of a grid challenging task [4–6]. In both
planning and operational stages, network security is associated
with voltage stability, which relates to the ability of the power
system to maintain steady-voltage levels at all buses after being
subjected to a disturbance [7–9]. Electrical grids experience
voltage instability when the operating regime moves closer to
voltage collapse or saddle-node bifurcation point, after which the
real solution to power flow equations disappears [10–12].
Therefore, information about the margin of voltage collapse is
necessary for better security assessment. Also, this information can
be useful to considerably decrease the chances of power disruption
and provide informed control actions for the robust and secure
operation of a grid [13, 14].

Voltage instability is a well-recognised phenomenon in the
power system community as it prompted many cascading events
and blackouts in past years [15–17]. Disruptions leading up to
voltage instability incidents are usually triggered by the continuous
rise of loads or significant change of the network topology
following a critical contingency. Consequently, voltage stability is
categorised as a small or a large disturbance stability problem
based on the nature of disruption. Furthermore, based on the time
scale of interest, the cause of a potential voltage instability can be
grouped into short-term and long-term phenomena [18]. The scope
of this paper is focused on the long-term voltage behaviour in
power systems.

Recently, reported voltage outages in Asia, Europe, and the US
have given thrust for developing effective computational tools for
the voltage stability analysis. Studies are performed to validate the
feasibility of an operating regime at any given time, by calculating
its proximity to collapse. Traditional approaches fall into two broad
categories. The first kind uses voltage stability index (VSI), a
scalar parameter that can be monitored as network state changes
over time [1, 19]. Index-based methods are simple,
computationally tractable, and provide a notion of instability;
however, these methods are not suitable for precautionary
measures [20]. In contrast to the index-based methods, the
continuation techniques like in [21, 22], and direct methods from

[12, 23] provide a quantitative bound on the distance to collapse in
the parameter space (like voltage setpoints or power injections).
The algorithmic procedure described in this paper belongs to the
latter category.

Voltage stability studies have been approached with both static
and dynamic interpretations. The static analysis employs a steady-
state model based on power flow equations to estimate security
margin from voltage collapse [24, 25]. In contrast, the dynamic
analysis considers a set of non-linear differential-algebraic
equations to model voltage fluctuations at each bus in time
following some disturbances [25]. Although the stability problem
is dynamic by nature, the effects of system dynamics from long-
term phenomena are usually slow [18, 26]. Therefore, we propose
to use a steady-state model, which is also extensively used by
industry. However, it is worth highlighting that the proposed
approach does not account for all processes within the grid, i.e.
changing load caused by on-load tap changers (OLTCs) and over
excitation limiters (OELs).

Moreover, voltage stability assessment can be performed either
online or offline mode. The online studies rely on real-time
measurements from the phasor measurement unit (PMU) or
supervisory control and data acquisition (SCADA) devices, and
updates margin of voltage collapse for moving the state of a
network [27]. It also assists the transmission system operator
(TSO) to determine acceptable manoeuvrability for an operating
regime, and a decision on optimum preventive measures, such as
reactive power dispatch rescheduling, switching capacitor banks,
and load shedding [28]. Contrary, offline analysis is usually
adopted for planning purposes like grid expansion studies and
allocation of reactive power reserves. From the computational
perspective, offline studies have no constraint on computational
time. Contrarily, the online studies have a significant
computational time constraint such that all the incoming
measurements can be processed for real-time assessment [27, 29].
This paper is focused on online voltage stability assessment based
on information provided by PMUs or a SCADA system.

Over the years, several efforts have been made to this problem.
As mentioned earlier, contributions fall into two main classes. The
first type of methods is based on the sensitivity indices or VSI, as
reported in [24, 30]. Normally, a static or quasi-static model
assumption is used to make these stability indices, which provide
local indicators of instability at each bus in the network. The
authors of [27, 31–33] and follow-up works from [34–38] propose
indices based on the load flow Jacobian and through phasor
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information available at PMUs, respectively. In [39], a real-time
PMU-based index is given through the maximum loading capacity
of a bus combined with the Thevenin equivalent theory for
aggregated representation. Recently, an innovative neural network
strategy is also being used for such methods in [40, 41]. A trained
neural network predicts the instability through an index at each bus
by incorporating power flow solutions and incoming data from
PMUs. Neural network approaches are beneficial in the long run
for a better understanding of the system behaviour. Despite the
simplicity in implementation and computational speed, index-based
methods fail to provide a quantitative assessment needed to avoid
an imminent contingency.

In the second category of methods, several algorithms have
been suggested that provide a quantitative bound or margin in
power injection space to assess the distance to instability. The
notable contributions are based on continuation power flow (CPF)
from [21, 22]. Continuation methods are equitably accurate but
suffer from the longer computational time since these techniques
depend on repetitive power flow calculations. Recently published
Holomorphic Embedding Load Flow Method (HELM) provides a
fast and reliable way to compute stability margins [42, 43].
However, its accuracy is sensitive to good germ and order of
approximation in the power series [42]. While the recent works
from [12, 44] supplement effort focused on the direct computation
of the distance to collapse, some estimate based approaches for
online purposes are also reported in [29, 45]. Demerits of the above
mentioned methods are linked to either computational speed,
convergence, scalability to large cases, and the computational time.
They might not be attractive for online purposes. Finally, some of
these algorithms also require a reformulation of the standard power
flow model, which results in a difficult implementation.

In this work, we propose a novel algorithm that updates the
margin of voltage collapse in real-time, incorporating information
about a base-case collapse point and incoming data from
measurement PMUs or SCADA system. The proposed approach is
referred to as the Newton-Corrector (NC) algorithm. Unlike CPF
solvers, it does not require an explicit tracking of the solution
manifold. The mathematical structure of the NC algorithm extends
the system of power flow equations using an additional equation to
characterise solutions on the boundary of solvability. This auxiliary
condition is denoted as the parametric equation throughout this
paper. Three different versions of the parametric equation are
formulated, which provides sufficient freedom to change the
voltage on sensitive buses, do not allow any unexpected numerical
updates. The algorithm enables a fast evaluation of the margin to
collapse for each new state of a grid, with precision and ease of
implementation from the computational context. Also, it does not
require a reformulation of the power flow equations. Finally, the
performance of the proposed algorithm has been demonstrated in a
number of standard scenarios. The key contributions of this work
are organised as follows:

i. The proposed approach updates the distance of voltage
collapse in real-time by incorporating base-case collapse point
solution and incoming data from measurement devices.

ii. The proposed algorithm is fast and numerically robust for
online voltage stability.

iii. Avoiding the need to reformulate power flow equations, the
proposed approach ensures ease of implementation and
programming.

The paper is organised as follows. Section 2 describes the
problem statement from geometrical interpretations. Section 3
presents the general mathematical formulation and system of
equations. Details about the base-case collapse point solution are
addressed in Section 4. The mathematical structure of the proposed
NC algorithm and relevant parametric equations are given in
Section 5. In Sections 6 and 7, we describe the implementation and
results from different test cases, respectively. Finally, the
conclusion and future plans are provided in Section 8.

2 Problem statement
The boundedness of power injection space is portrayed in Fig. 1. 
The solid curve depicts a solvability boundary in ΔPm (active
power injection) and ΔQm (reactive power injection) space. Here,
index ‘m’ indicates a random bus in the network. The solvability
boundary encloses a set of operating points in ΔPm ΔQm for which
the real-valued solution of power flows exist. Any operation
beyond this boundary will result in voltage collapse. Hence,
quantifying the distance of voltage collapse is crucial for security
assessment [46]. As the TSO can determine the relative degree of
security for an operating regime, acceptable manoeuvrability if it
changes, and optimal control measures needed to bring it within a
feasible region of operation [46, 47].

In a conventional setting, system operating state is defined by a
complex vector as

ΔSm = ΔPm + jΔQm . (1)

For security assessment, as mentioned before, the feasibility of any
state ΔSm is evaluated by its margin to solvability boundary. Let us
assume two distinct operating states ΔSm

0  and ΔSm
N as shown in Fig.

1. The base-case state ΔSm
0  is a real-time state estimation of a pre-

contingency case, or future postulated system condition [48]. It is
defined on an hourly basis. And serves as a benchmark regime to
build power flows, transmission flows, or transfer capability
calculations. The point on the solvability boundary corresponding
to ΔSm

0  is referred to as ‘base-case collapse point’. In real-time, the
state of the network changes on a continuous manner after every
few seconds denoted by ΔSm

N, and the corresponding point on
solvability boundary is referred to as ‘new collapse point’. It can be
observed that even in the close vicinity with the base-case, the
margin to a new collapse point for ΔSm

N might be significantly
smaller.

The goal of this study is to develop an algorithm to update the
margin to collapse for continuously changing state ΔSm

N without
significant computational effort, by exploiting the base-case
collapse point and incoming measurements. First, a general
mathematical structure is given in the next section.

3 Mathematical formulation
To investigate the voltage stability problem from the context of
long-term stability phenomenon, a static model of the power
system is considered in this study. The classical non-linear
algebraic system of equations is presented in a compact form as

f i
N(x, λ) = f i(x) − λΔSi

N = 0, i = 1, 2, …, n . (2)

Here f i
N : ℂn × ℂ → ℂn denotes n number of power flow equations

with x ∈ ℂn vector of system variables, while λ ∈ ℝ represents the

Fig. 1  Solvability boundary in ΔPm ΔQm space
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loadability parameter. In (2), ΔSi
N ∈ ℂn denotes the new operating

state of the grid in real time, i.e. ΔSi
1, ΔSi

2, ΔSi
3, …. The new state

ΔSi
N is determined by analysing incoming data from measurement

devices installed in the network, combined with the measurement
pre-processing by a state estimator, etc. [20].

For a given operating state ΔSi
N, the loadability parameter λ

satisfies the following condition 1 ≤ λ ≤ λmax. For λ = 1, the
solution of (2) describes a normal power flow. While for λ = λmax,
the solution of (2) corresponds to the voltage collapse, equivalently
λmax describes the margin of ΔSi

N to the voltage collapse. The
online voltage stability assessment requires solving (2) in real time
for each new operating regime ΔSi

N to calculate corresponding
λmax, which is a computationally intensive task.

The framework of this paper is focused on developing a
computationally fast algorithm that can solve (2) faster for each
new operating state ΔSi

N in time by utilising the solution of (2) for
a base-case regime ΔSi

0 along with the measurements from PMU
devices. Details about the system of equations and variables
considered

3.1 Modelling of power flows

The set of equations considered in (2) is only power flows. The
power flow model can be described in both polar and rectangular
coordinates. The reason to choose a formulation in polar
coordinates is twofold. (i) First, it is easier to implement and to
program. (ii) Second, it contains less equations and variables
compared to the rectangular formulation. Finally, it preserves the
sparse structure of the power flow model.

The complex voltage phasor at each bus i is represented by the
polar coordinates

V
^

i = Vi ∠θi (3)

This way the power flows in (2) can be stated as follows:

f i
N(x, λ) = V

^

i ∑
k = 1

n

(Y
^

i, kV
^

k)
∗ − λΔSi

N = 0 (4)

In (4), Y
^

i, k defines the complex entries of the admittance matrix
Ybus ∈ ℂn × n, while ΔSi

N is expressed in terms of active and reactive
power injections

ΔSi
N = (Pgen, i

N − Pload, i
N ) + j(Qgen, i

N − Qload, i
N ) (5)

In an n bus system, N = {1, 2, …, n} represents the set of all buses,
ℒ is the set of load (PQ) buses, and G is the set of generator (PV)
buses. For each bus i ∈ N in the network except slack bus S, one
can write (4) explicitly in terms of real and reactive power balance
as

Vi ∑
k = 1

n

Vk Gi, kcos(θi − θk) + Bi, ksin(θi − θk)

−λ(Pgen, i
N − Pload, i

N ) = 0

(6)

Vi ∑
k = 1

n

Vk Gi, ksin(θi − θk) − Bi, kcos(θi − θk)

−λ(Qgen, i
N − Qload, i

N ) = 0

(7)

In (6) and (7), both active and reactive generations at bus i are
denoted by Pgen, i

N  and Qgen, i
N  respectively, likewise active and

reactive loads are Pload, i
N  and Qload, i

N . Vi  and Vk  are the voltage
magnitudes at the ith and kth buses of a network. The terms Gi, k

and Bi, k represent the real and imaginary entries of the admittance
matrix as Y

^

ik = Gi, k + jBi, k.

To summarise, a set of equations considered in (2) are (6) and
(7) for every PQ bus, while only (6) for every PV bus in the
network. Consequently, the system of variables in (2) consists of
phase angle θi for every PQ and PV bus, and voltage magnitude Vi

for only PQ buses in the system.

4 Base-case collapse point
To solve the system in (2) for each new operating state ΔSi

N, it is
required to calculate the margin to collapse for a base-case regime
ΔSi

0. The base-case collapse point solution sets the foundation for
the proposed methodology in this paper.

f i
0(x, λ) = f i(x) − λΔSi

0 = 0, i = 1, 2, …, n (8)

The general mathematical intuition of (8) is conceptually similar to
one in (2) except it is stated for a base-case regime ΔSi

0. The set of
equations in (8) is underdetermined as there are ‘n + 1’ variables
with only ‘n’ equation, thus solution of (8) describes a 1-manifold
curve. To solve the problem deterministically, it is possible to
parameterise the solution manifold with λ and use continuation
based techniques as proposed in [21]. The continuation algorithms
are well explored and robust for tracing the solution space curves
but requires a lot of computational effort which may not be
attractive for online voltage stability problem [49]. An alternative
way, to solve (8) is based on the direct methods for determining the
margin to collapse without explicit tracking of the solution
manifold as explored in [12]. To solve (8) for λmax, the proposed
direct algorithm from [12] extends the system in (8) with an
additional equation referred as ‘transversality condition’. This
condition describes the degeneracy of the Jacobian J

0 = ∂ f i
0/xj.

Thus, the extended system can be written as

f i
0(x, λ) = 0, i = 1…n (9a)

g(x) = 0 (9b)

Here g(x) denotes the degeneracy of J0 and there are several ways
to enforce this condition as described in [12]. The most common
and obvious choice is determinant but it suffers from numerical
instabilities and also not scalable for the large test cases [50].
Several possible choices for g(x) either based on vector or scalar
conditions are presented in [12]. In the next section, we consider
two distinct options for g(x) which will form the basis for NC
algorithm proposed in this paper.

4.1 Eigenvector-based condition

The most common way to enforce g(x) is based on a eigenvector
transversality condition [10, 12]. In this choice, the degeneracy of
J

0 is enforced by introducing a normalised eigenvector y
0

corresponding to zero eigenvalue as

geig(x, y) =
J

0
y

0

y
0⊤

y
0 − 1

(10)

Equation (10) enforces a non-trivial kernel, i.e. J
0 is degenerate

such that y
0 is the normalised right eigenvector with zero

eigenvalue [12]. The right eigenvector y
0 preserves information

about the sensitivity of buses in the form of voltage magnitudes
and phase angles. The condition geig can also be stated for the
corresponding left eigenvector z0 as

geig(x, z) =
J

0⊤
z

0

z
0⊤

z − 1
(11)

The interpretation of the above condition is equivalent to (10)
except its formulated for the left eigenvector z

0. However, unlike
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y
0, the left eigenvector z0 preserves information about the sensitive

directions for active and reactive power injections.

4.2 Singular value-based condition

Here, the system in (9) is complemented by a scalar transversality
condition based on the smallest singular value of J

0. For singular
value decomposition, J

0 = U
0
Σ

0(V0)⊤ is the matrix, U0 and V0 are
the orthogonal matrices, respectively. While Σ

0 is the diagonal
matrix consisting of singular values in the following order
σ1

0 > σ2
0 > ⋯ > σn

0 ≥ 0. At the voltage collapse point J
0 becomes

degenerate and therefore the nth singular value becomes equal to
zero. Therefore, g(x) can be stated as follows:

gsvd(x) = σn
0 = un

0⊤
J

0
vn

0 (12)

From (12) σn
0 is the nth singular value, while un

0 and vn
0 represent the

normalised nth left and right singular vectors, respectively, [12].
Here σn

0 is a measure of system proximity to voltage collapse. The
nth right singular vector vn

0 indicates the sensitive voltages and
phase angles. While the nth left singular vector un

0 describes the
most sensitive directions for active and reactive power injections.

The margin of voltage collapse for new operating points
ΔSi

1, ΔSi
2, … can be calculated in the real time with a small

computational effort by utilising the solution of (9) for the base-
case with addition of real-time measurements as explained in the
next section.

5 NC algorithm
The main goal is to update the collapse point information as an
operating state of a network moves from the base-case ΔSi

0 to new
state ΔSi

N. One can use information from the base-case collapse
point to avoid additional computational time. Following the
notation from (2) there are ‘n’ number of equations with ‘n + 1’
variables. Thus, a parametric equation is devised as an additional
condition to solve for ‘n + 1’ unknowns. The generalised form for
the system of equations can be written as

f i
N(x, λ) = 0, i = 1, …, n (13a)

p(x(s), λ(s)) = 0 (13b)

Here s denotes the parameterisation of the solution manifold. The
condition p(x, λ) can be interpreted as a corrector equation, which
enforces solution of (2) on the solvability boundary using the
information about the non-trivial kernel of J

0. The choice of
parameterisations is formulated through the conditions described in
the previous section; more details regarding p(x, λ) are given in the
subsequent sections. Numerical solution of (13) can be obtained
using traditional Newton iterations in the space of x and λ.
Therefore, the proposed method is referred to as Newton-Corrector
(NC) algorithm. We can describe iteration steps as follows:

f
N + (∂x f

N)Δ x + (∂λ f
N) Δλ = 0 (14a)

p + (∂xp)⊤Δ x + (∂λp)Δλ = 0 (14b)

The inflated system Jacobian will be non-singular

J =
∂x f ∂λ f

∂xp ∂λp
(15)

The next correction x′ and λ′ in the Newton iteration is then
computed as follows:

x′ = x + αΔx (16a)

λ′ = λ + αΔλ (16b)

Here α denotes the Newton step size [51]. Normally, α is chosen to
be small enough to ensure global convergence of the NC algorithm.
Iterations will continue until a solution with the desired precision
level is achieved. In general, problem for updating the margin to
collapse for ΔSi

N can be summarised as

i. Updating the collapse point information in real-time with
incoming measurements from PMUs combined with a
measurement pre-processing by a state estimator.

ii. Calculating updated collapse point after system experiences
some intermittent disturbances like generator or transmission
line outages.

In principle, both scenarios are conceptually similar, as in either
case, the state of a grid moves from ΔSi

0 to ΔSi
N. One key

difference is the margin to collapse between the base-case and the
updated state. In the first scenario, this margin is somewhat smaller
in comparison to the second case.

For either one of the scenarios described above, the NC
algorithm can be used to find a solution. The system in (13) is
solved using standard Newton iterations with a proper selection of
the parameterisation having a base-case collapse point as an initial
starting point. Selection of the parametric equation p(x, λ) should
be made in a way that; (i) it allows maximum flexibility for ‘from
the bus’ and ‘to the bus’ to make large updates during the iteration
process, (ii) and also provides sufficient freedom to change the
voltage on sensitive buses without compromising the numerical
stability of the algorithm. In the next sections, we drive three
different versions of the parametric equation from the non-trivial
kernel of a base-case Jacobian J0.

5.1 Parameterisation: first choice

For new operating directions ΔSi
N, one can take advantage of the

base-case solution defined by (10) and (11). Let's assume that ΔSi
N

is just a slightly perturbed ΔSi
0 such that

J
N = J

0 + δJ (17)

In (17), J
N is the Jacobain associated with ΔSi

N. While δJ is the
change between J

N and J
0. We introduce a small perturbation

parameter ϵ in (17) to calculate eigenvalues Λi of JN as a function
of eigenvalue decomposition of J0.

J
N = J

0 + ϵδJ (18)

Let's calculate the first-order approximation to the corresponding
eigenvalues Λi of JN,

The eigenvalue equation yields

J
N

yi = Λiyi (19)

Here yi is right equivocator for J
N. As ϵ is a small parameter, we

shall expand the solution of (19) as a Taylor series in ϵ,

(J
0 + ϵδJ)(yi

0 + ϵyi
1 + ϵ

2
yi

2, . . . )

= (Λi
0 + ϵΛi

1 + ϵi
2Λi

2, . . . )(yi
0 + ϵyi

1 + ϵ
2
yi

2, . . . )
(20)

For ϵ0,

J
0
yi

0 = Λi
0
yi

0, (21)

For ϵ1,

J
0
yi

1 + δJyi
0 = Λi

0
yi

1 + Λi
1
yi

0 (22)
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Multiplying both sides with zi
0⊤ left eigenvector corresponding to

Λi
0 of J0,

zi
0⊤

J
0
yi

1 + zi
0⊤

δJyi
0 = Λi

0
zi

0⊤
yi

1 + Λi
1
zi

0⊤
yi

0 (23)

Here, zi
0⊤

J
0
yi

1 = Λi
0
zi

0⊤
yi

1 thus,

Λi
1 =

zi
0⊤

δJyi
0

zi
0⊤

yi
0

(24)

Thus, the first-order approximation to Λi as a function of λi
0, yi

0 and
zi

0 can be written as follows:

Λi = Λi
0 +

zi
0⊤

δJyi
0

zi
0⊤

yi
0

(25)

Now let's assume J
0 is degenerate, and the ith eigenvalue Λ0 is

zero. Then, according to (10) and (11), z
0 and y

0 represent the
normalised left and right null space eigenvectors of J

0. Thus, for
J

N to be degenerate at the solvability boundary the corresponding
ith eigenvalue Λ should be equal to zero as well. Hence, parametric
equation for the smallest eigenvalue of JN can be formulated as

peig(y
0, z

0) = z
0⊤

J
N

y
0 (26)

To summarise, one can solve the following system of equations
for new operating regime assuming that the normalised left and
right eigenvectors corresponding to null space of J0 are known.

f i
N(x, λ) = 0, i = 1…n (27a)

peig(y
0, z

0) = 0, (27b)

5.2 Parameterisation: second choice

In this section, we formulate another parametric equation psvd

based on the base-case solution defined by (12). Following the
same assumption that ΔSi

N is just slightly perturbed ΔSi
0 such that

J
N = J

0 + δJ (28)

Introducing a perturbation parameter ϵ in (28) to solve for singular
values σi of JN.

J
N = J

0 + ϵδJ (29)

The singular value decomposition yields

ui
⊤J

N
vi = σi (30)

Here ui and vi correspond to the ith left and right singular vectors of
J

N. Similar to the previous section, we shall expand the solution
(30) as a Taylor series in ϵ.

(ui
0⊤

+ ϵui
1⊤

+ ϵ
2
ui

2⊤
+ ⋯)(J

0 + ϵδJ)(vi
0 + ϵvi

1

+ϵ
2
vi

2 + ⋯) = (σi
0 + ϵσi

1 + ϵ
2
σi

2 + ⋯)
(31)

After some algebraic manipulation the first-order approximation of
the ith singular value σi of JN can be written as a function of σi

0, ui
0

and vi
0 as follows:

σi = σi
0 + ui

0⊤
δJvi

0 (32)

At solvability boundary, J0 is degenerate and the nth singular value
σn

0 is zero. Then, according to (12), un
0 and vn

0 are the normalised left
and right nth singular vectors corresponding to the null space of J0.
For J

N to be degenerate the nth singular value should be equal to
zero. Thus, the second parameterisation psvd becomes

psvd(un
0, vn

0) = un
0⊤

J
N

vn
0 (33)

One can solve the following system of equations for ΔSi
N assuming

that the left and right singular vectors corresponding to non-trivial
kernel of J0 are known.

f i
N(x, λ) = 0, i = 1, …, n (34a)

psvd(un
0, vn

0) = 0 (34b)

Conceptually, the formulations of the proposed parametric
conditions, i.e. peig and psvd are similar.

5.3 Parameterisation: third choice

A rather simple but effective parametric equation was introduced in
[49]. The base-case collapse condition from (12) preserves
information about the bus sensitivity in a network. The nth right
singular vector vn

0 from (12) can provide sensitivity of buses in
terms of system variables. All the entries in the vn

0 are positive. If
the ith entry of vn

0 is close to zero, than corresponding ith bus is less
sensitive and vice versa if the ith entry of vn

0 is large. From a
complex notation, the real part of vector vn

0 relates to sensitivity in
terms of phase angles, while the imaginary part links to sensitivity
of buses in the form of voltage magnitudes. Therefore, a parametric
equation based on vn

0 is well suited here. The proposed equations ps

can be expressed as follows:

ps(vn
0) = ∑

k = 1

n

Vk − Vk
pre × Li (35)

Here Vk  is the voltage magnitude corresponding to the collapse
point for ΔSi

N, and Vk
pre  are the voltage magnitudes related to the

collapse point of ΔSi
0. Whereas Li is the imaginary part of a

normalised right singular vector ( i.e. L = ℑ(vn
0) ) that contains

information about the sensitivity in the form of voltage
magnitudes. Finally, one can solve the following system of
equations to determine the margin of collapse for ΔSi

N assuming
that the right singular vector corresponding to null space of J

0 is
known.

f i
N(x, λ) = 0, i = 1, …, n (36a)

ps(vn
0) = 0 (36b)

The NC algorithm was formulated with either choice of
parametric equations mentioned above. In the subsequent sections,
a detailed computational perforce analysis is given.

6 Implementation
The implementation of the NC method is simple and easily
programmable, as all the steps are similar to a traditional Newton–
Raphson. Implementation was performed in Matlab using standard
libraries from Matpower toolbox [52]. An academic version of the
code is available at a public domain [53] for reproducing results
from this paper and for further developments. Following machine
configuration was used to produce all the results in this paper; Intel
i7 with 16 Gb of RAM running at 2.8 GHz.

Fig. 2 shows a functional flowchart of the NC algorithm for
better understanding the implementation. To update the margin to
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collapse for given ΔSi
N, the NC algorithm was formulated with

three different parametric equations (i.e. peig, psvd, and ps). If x
0 and

λ
0 represents a base-case collapse solution, then the following steps

are performed such that the algorithm can always find a feasible
solution.

i. First, information about new state ΔSi
N is evaluated from the

measurement devices.
ii. Then, NC iterations are initiated to compute the margin to

collapse for ΔSi
N with x0 and λ0 as an initial guess.

iii. Once the algorithm reaches a solution, i.e. xN and λ
N, the

degeneracy condition of JN is checked through g(x) = 0.
iv. If the condition holds, then xN and λN is the desired solution.
v. Otherwise, xN and λN are set as an initial guess and iterations

process is initiated by replacing p(x, λ) equation with g(x).

From the numerical experiments, it was observed that the
algorithm found an accurate solution with the fast parameterisation
techniques presented in this work. Results were obtained with four-
digit precision.

7 Numerical studies
In the numerical experiments, several scenarios are devised to
demonstrate the performance of the NC algorithm with either
choice of parameterisation. In the numerical examples, the
following setup was adopted:

i. First, a base-case regime ΔSi
0 is defined, and then information

about the non-trivial kernel of the base-case Jacobian ( or
simplify base-case collapse solution) is stored to be used in the
NC iterations.

ii. While the continuously evolving operating state ΔSi
N is

assumed through rigorous assumptions. To represent a realistic
view in terms of measurements, the state ΔSi

N was given in
terms of either change in power injections at some random
buses or some significant changes in the network's topology
(i.e. transmission line or generator outage, etc.). In some
experiments, the assumed measurements were also subjected to
random noise levels to depict the data quality issues from
measurement devices.

But, in an actual practical environment, the online state ΔSi
N

monitoring takes into account two main factors; (i) the admittance
matrix and (ii) voltage phasor measured at each bus. Usually,
voltage magnitude and phase angle at each bus in a network are
evaluated by the voltage phasor information available at PMU
devices. Measurements from PMU goes through a pre-processing
platform to assess the new operating state in terms of change in
power injections and network topology [28]. However, PMUs are
not placed at each node of an electric grid. To overcome this issue
of insufficient observability, an adaptive state estimation algorithm
is typically used to estimate the evolving operating regime by
utilising the available PMUs data set [20, 28].

7.1 3-bus network

The proposed method is first applied to a small 3-bus system as
shown in Fig. 3. Network configurations are as follows; bus 1 is a
slack bus with voltage phasor V^

1 = 1.0∠0°. Bus 2 is treated as PV
(generator) bus with voltage set point V

^

2 = 1.0∠θ2, while active
and reactive power generations are denoted by Pgen, 2 and Qgen, 2,
respectively. Finally, bus 3 is a PQ (load) bus, the real and reactive
loads at bus 3 are represented by Pload, 2 and Qload, 2 with a complex
voltage phasor denoted as V

^

3 = V3 ∠θ3. All the lines in the
network are lossless, the inductance was set to
X12 = X13 = X23 = 1.0 p.u.

Based on the network settings, the power injection space is
confined by Pgen, 2, Pload, 3 and Qload, 3. Whereas variable space
consists of θ2, θ3 and V3 . The following general expressions
describe the active power balance equations:

sin θ2 + V3 sin(θ2 − θ3) − λ(Pgen, 2) = 0 (37a)

V3 sin θ3 + V3 sin(θ3 − θ2) + λ(Pload, 3) = 0 (37b)

While the reactive power balance and the power flow Jacobian
matrix (i.e. J) are described as

Fig. 2  Flowchart of the NC algorithm
 

Fig. 3  3-bus network
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2 V3
2 − V3 cos θ3 − V3 cos(θ3 − θ2)

+λ(Qload, 3) = 0
(38)

J =

J11 J12 J13

J21 J22 J23

J31 J32 J33

(39)

J11 = cos θ2 + V3 cos(θ2 − θ3) (40a)

J12 = − V3 cos(θ2 − θ3) (40b)

J13 = sin(θ2 − θ3) (40c)

J21 = − V3 cos(θ3 − θ2) (40d)

J22 = V3 cos θ3 + V3 cos(θ3 − θ2) (40e)

J23 = sin θ3 + V2 sin(θ3 − θ2) (40f)

J31 = − V3 sin(θ3 − θ2) (40g)

J32 = V3 sin θ3 + V3 sin(θ3 − θ2) (40h)

J33 = 4 V3 − cos θ3 − V2 cos(θ3 − θ2) (40i)

Here, we present a scenario constraining the Qload, 3 = 0, and
calculate margin of voltage collapse/solvability boundary in space
of Pgen, 2 and Pload, 3. A solid curve from Fig. 4 depicts the actual
solvability boundary in Pgen, 2 − Pload, 3 space, which was computed
using the methodology from [10]. First, a base-case state ΔSi

0 (see
Fig. 4) is solved to find a point on the solvability boundary referred
to as ‘base-case collapse point’. The information about such
solution point is saved to be used as an initialisation in the NC
iterations. From base-case collapse solution, details about
eigenvectors (y

0 and z
0) and singular vectors (un

0 and vn
0)

corresponding to the null space of J0 are also saved.
In order to simulate an online scenario, we discretise

Pgen, 2 − Pload, 3 grid as follows. Pload, 3 = Rcos ϕ and Pgen, 2 = Rsin ϕ

with R = 0.2 and 0 ≤ ϕ ≤ (π /4). Each discretise direction in
Pgen, 2 Pload, 3 plane represents a new operating regime ΔSi

N, which
was solved using the NC algorithm with the proposed choices of
p(x, λ). From Fig. 4, it can be seen that the algorithm calculates the
points in a close proximity to the actual solvability boundary with
either choices of parameterisation, i.e. peig, psvd, and ps. Also, the
NC algorithm converged quadratically with less than ten iterations.
No such case was observed in which the proposed parameterisation
failed to find a correct solution. This example confirms the
precision and convergence of the algorithm.

The next section presents details about different IEEE networks
with some practical scenarios.

7.2 IEEE 14-bus network

In this section, an IEEE 14-bus test network [54] is analysed. The
network structure consists of four PV buses, nine PQ buses, and
bus one as a slack bus. Several practical scenarios are considered to
assess the performance, robustness and numerical instabilities
encountered by the NC algorithm for different choices of
parametric equations, i.e. peig, psvd, and ps. For simplicity, the base-
case regime ΔSi

0 was based on the power injections provided in the
Matpower data file [52]. For ΔSi

0, the margin of voltage collapse
was λ0 = 4.060.

The small disturbance: In the normal operation, the state of the
network changes due to small variations like load increase or
decrease at certain buses. Therefore, the new state of the network
ΔSi

N can be viewed as a perturbed base-case state. To simulate an
online mode, ΔSi

N was defined as follows:

ΔSi
N = σ j ΔSi

0 . (41)

such that

σ j =
1 ifi ≠ j

η otherwise
(42)

Here, index i describes the number of buses in the network, while
index j corresponds to the perturbed buses where power injections
are varied by an amount η. Normally, the selection of perturbed
buses is made from real-time measurement. 

• In the first case, the power injections at the following buses are
perturbed L = {5, 7, 13}. At these buses, the power injections were
gradually increased up to 60%. The summary of this case is shown
in Table 1. Here, λeig, λsvd, and λs define the margin of voltage
collapse obtained from the NC algorithm for peig, psvd, and ps,
respectively. And λCPF in the table represents the actual distance to
the voltage collapse obtained from CPF solver proposed in [21].
From Table 1, it is clear that the difference between λs obtained
from the NC algorithm with either choices of p(x, λ) and λCPF is
less than 1%. Therefore, confirms the precision of the obtained
results.
• The second case considers some other random buses, i.e.
L = {9, 11, 14}. The amount of maximum power injections
perturbation at these buses was 80%. Results from Table 1 show
that the algorithm converged with relatively small error.
• A third case selects L = {3, 13, 14} with maximum perturbation
amount up to 90%. The precision of the results was similar to the
previous cases.

For each case, the proposed parameterisation worked well, and
the NC algorithm reached a solution within ten iterations.
Numerical results also confirm that the choice of buses and level of
power injection variation did not affect the performance of the
algorithm.

Time domain simulations: In the time-domain simulations,
several examples are explored. To portray a realistic picture, in
given scenarios, power injections at random buses are perturbed
over a time interval with either fixed or variable fluctuations.
Results are presented from a time frame t ∈ [0 240] s. Here, t = 0
 s corresponds to a base-case state defined by the initial power
injections, while t = 240 s denotes the maximum allowable power
injection state.

Fig. 4  Solvability boundary in Pgen, 2 − Pload, 3 space
 

Table 1 Summary for IEEE 14-bus case (small
disturbances)

Cases L λeig λsvd λs λCPF

01 5,7,13 3.812 3.812 3.811 3.813
02 9,11,14 2.923 2.922 2.924 2.926
03 3,13,14 2.801 2.800 2.776 2.803
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• Case 1: The active power injection at load buses 4, 5, 12, 13, and
14 is gradually increased after every 2 s with a ± 20% fixed
variations. The values of λs obtained in this scenario are shown in
Fig. 5 with a blue curve. Here, the fluctuations in the curves
represent the noise level from measurement devices.
• Case 2: Unlike in the previous example, here the active power
injection at following buses 4, 9, 10, 11, and 13, is gradually
ramped up every 2 s. And after every 10 s,, a random noise level
was added, ranging from ±10 to ±50%. The computed values of λs

are shown by a red curve in Fig. 5.

For both cases, the growth of active power injections over time
is depicted in Figs. 6 and 7, respectively. In either case, at each
time interval, the NC algorithm converged quadratically (i.e. less
than ten iterations) with a higher degree of precision.

The large disturbance: In the case of large disturbances, the
system tries to maintain steady voltages following disturbances like
system faults, transmission line tripping, generation outages, or
other circuit contingencies [9]. For practical purposes, scenarios
are considered to analyse the performance of the NC algorithm
with different choices of p(x, λ). 

• In the first case, a line outage is simulated between buses 2 and 4
such that the network connectivity is preserved. Also, the power
injections at each bus were kept the same as in the base-case.
Values of λ's obtained for each choice of parametric equations are
provided in Table 2. Results obtained from the NC algorithm are
close to the actual solution.
• In the second case, line outages are considered between buses 2
and 4, and also between buses 4 and 9. It's noticeable from Table 2
that the precision of results is still quite high.
• The last case considers three line outages. An addition to the
previous line outages the transmission line between buses 2 and 5
is also tripped along with a generator outage at bus 2. From Table
2, it is observable that for peig and psvd, the NC method reached to a
close value of λCPF. However, the parameterisation choice based on
ps the solution was a bit far from the λCPF. To avoid such situation,
the NC iterations are started again by replacing ps with a
transversality condition g(x). And previously obtained solution is
used an initial guess to keep the computational time minimum.

7.3 Computational performance

In this section, results for various IEEE test cases are presented to
evaluate the computational performance of the NC algorithm. First,
the precision of the algorithm was determined with the proposed
choices of parametric equations. In Table 3, the algorithm was
initiated to solve several IEEE test networks ranging from small to
large. To simulate an online scenario for ΔSi

N, the standard base-
case regime was perturbed by increasing active and reactive power
injections up to 50% at some random buses. The choice of such
buses is denoted by L in Table 3. Whereas λeig, λsvd and λs

correspond to the margin of voltage collapse for peig, psvd and ps,
respectively. And λCPF related to the actual distance to voltage
collapse obtained from the CFP solver [21]. It can be observed
from Table 3 that for different choices of parametric equations, the
relative error between computed values of λs and λCPF is less than
1%.

The results in Table 4 discuss the convergence of algorithm
with different parametric equations. These results correspond to
scenario considered in Table 3. Here τeig, τsvd and τs describe the
number of Newton iterations required to reach the solution for
peig, psvd and ps, respectively. It is evident from Table 4, the NC
algorithm with either choice of the parametric equations converges
within 10 or 11 iterations. The overall convergence the algorithm is
quadratic but the choice of psvd resulted in a small number of
iterations in comparison to peig and ps.

Finally, the computational speed and scalability to the large test
cases was assessed. In Table 5, teig, tsvd and ts represent the total
time required to reach a solution for peig, psvd and ps, respectively. 

While tCPF corresponds to the time for the CPF algorithm. The
overall computational time for the NC algorithm is very small and
comparable to even normal power flow solver. Although the

Fig. 5  Updated loadability margins (λ) over time
 

Fig. 6  Case 1: growth of active power injections over time
 

Fig. 7  Case 2: growth of active power injections over time
 

Table 2 Summary for IEEE 14-bus case (large
disturbances)

Cases λeig λsvd λs λCPF

01 3.278 3.279 3.251 3.302
02 3.249 3.249 3.213 3.267
03 2.292 2.290 2.289 2.293
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computational speed among each parametric choice is comparable
but condition based on the psvd surpasses the others due to a small
number of iterations.

To summarise, the proposed algorithm provides a fast way to
update the distance to voltage collapse in real-time for each new
state of the network. The algorithm can also presents the precise
results with tractability to large networks.

8 Conclusions and future work
The paper proposes a novel method for the online voltage stability
assessment referred to as the ‘Newton-Corrector’ algorithm. The
algorithmic procedure updates the margin of collapse for a
continuously evolving state of a network without significant
computational effort. This is done by utilising the base-case
collapse point and incoming measurements. The NC algorithm
offers several advantages over the traditional approaches to this
problem. First, unlike in index-based methodologies, it provides a
quantitative measure of distance to voltage collapse. Second, the
algorithm does not require a re-formulated power flow model.
Thus the implementation is straightforward. Third, it solves a set of
power flow equations supplemented by just one scalar auxiliary
condition; therefore, the computational burden of each iteration is
comparable to a traditional power flow analysis. Finally, it is worth
noticing that initialisation does not require solving for some null
space eigenvectors.

The algorithm's underlying mathematical structure uses a
parametric equation formulated from a base-case collapse point
solution. Although there are several ways to express this condition,
this paper presents three versions, i.e. peig, psvd, and ps based on the
non-trivial kernel of a base-case Jacobian. From detailed numerical
experimentation, it was observed that psvd equation transcends the
other choices in terms of the number of iterations, numerical
stability, robustness, and scalability. This paper also covers detailed
performance analysis and comparison of the proposed parametric
conditions, together with the clear conclusions concerning the best
option.

In numerical studies, several practical cases are considered to
represent a realistic scenario. From all the numerical experiments,
it was observed that the NC algorithm with either choice of
parameterisation finds an accurate solution and does not encounter
any numerical stability issues. From the context of future studies,
there are numerous possible extensions to this method: examining
more practical scenarios and extending the current formulation to
investigate the effects of transient voltage stability. And finally,
using the NC algorithm to calculate nomograms of the power flow
solution space.

9 Acknowledgments
The authors thank Prof. Janusz Bialek from the Center for Energy
Science & Technology (CEST) at the Skolkovo Institute of Science
and Technology for his support and guidance.

10 References
[1] Löf, P., Smed, T., Andersson, G., et al.: ‘Fast calculation of a voltage stability

index’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 54–64
[2] Van Cutsem, T., Vournas, C.: ‘Voltage stability of electric power systems’, vol.

441 (Springer, Germany, 1998)
[3] Diao, R., Sun, K., Vittal, V., et al.: ‘Decision tree-based online voltage

security assessment using pmu measurements’, IEEE Trans. Power Syst.,
2009, 24, (2), pp. 832–839

[4] Moghavvemi, M., Omar, F.: ‘Technique for contingency monitoring and
voltage collapse prediction’, IEE Proc., Gener. Transm. Distrib., 1998, 145,
(6), pp. 634–640

[5] Canizares, C.A., Dobson, I., Van Cutsem, T., et al.: ‘Voltage stability
assessment: concepts, practices and tools’. IEEE/PES Power System Stability
Subcommittee Special Publication (SP101PSS), USA, 2002

[6] Maharjan, R., Kamalasadan, S.: ‘Voltage stability index for online voltage
stability assessment’. North American Power Symp. (NAPS), Charlotte,
North Carolina, USA, 2015, pp. 1–6

[7] Kwatny, H., Pasrija, A., Bahar, L.: ‘Static bifurcations in electric power
networks: loss of steady-state stability and voltage collapse’, IEEE Trans.
Circuits Syst., 1986, 33, (10), pp. 981–991

[8] Sauer, P.W., Pai, M.: ‘Power system steady-state stability and the load-flow
jacobian’, IEEE Trans. Power Syst., 1990, 5, (4), pp. 1374–1383

[9] Kundur, P., Paserba, J., Ajjarapu, V., et al.: ‘Definition and classification of
power system stability IEEE/CIGRE joint task force on stability terms and
definitions’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 1387–1401

[10] Hiskens, I.A., Davy, R.J.: ‘Exploring the power flow solution space
boundary’, IEEE Trans. Power Syst., 2001, 16, (3), pp. 389–395

[11] Ajjarapu, V.: ‘Computational techniques for voltage stability assessment and
control’ (Springer Science & Business Media, Germany, 2007)

[12] Ali, M., Dymarsky, A., Turitsyn, K.: ‘Transversality enforced newton raphson
algorithm for fast calculation of maximum loadability’, IET. Gener. Transm.
Distrib., 2018, 12, (8), pp. 1729–1737

[13] Chiang, H.-D., Dobson, I., Thomas, R.J., et al.: ‘On voltage collapse in
electric power systems’, IEEE Trans. Power Syst., 1990, 5, (2), pp. 601–611

[14] Van Cutsem, T., Moisse, C., Mailhot, R.: ‘Determination of secure operating
limits with respect to voltage collapse’, IEEE Trans. Power Syst., 1999, 14,
(1), pp. 327–335

[15] Abe, S., Fukunaga, Y., Isono, A., et al.: ‘Power system voltage stability’,
IEEE Trans. Power Appar. Syst., 1982, 10, pp. 3830–3840

[16] Carreras, B.A., Newman, D.E., Dobson, I., et al.: ‘Evidence for self-organized
criticality in a time series of electric power system blackouts’, IEEE Trans.
Circuits Syst. I, Regul. Pap., 2004, 51, (9), pp. 1733–1740

[17] Dobson, I., Carreras, B.A., Lynch, V.E., et al.: ‘Complex systems analysis of
series of blackouts: cascading failure, critical points, and self-organization’,
Chaos: An Interdisciplinary J. Nonlinear Sci., 2007, 17, (2), p. 026103

[18] LÖf, P.-A., Hill, D.J., Arnborg, S., et al.: ‘On the analysis of long-term
voltage stability’, Int. J. Electr. Power Energy Syst., 1993, 15, (4), pp. 229–
237

[19] Lof, P.-A., Andersson, G., Hill, D.: ‘Voltage stability indices for stressed
power systems’, IEEE Trans. Power Syst., 1993, 8, (1), pp. 326–335

[20] Glavic, M., Van Cutsem, T.: ‘Wide-area detection of voltage instability from
synchronized phasor measurements. part I: principle’, IEEE Trans. Power
Syst., 2009, 24, (3), pp. 1408–1416

[21] Ajjarapu, V., Christy, C.: ‘The continuation power flow: a tool for steady state
voltage stability analysis’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 416–423

[22] Avalos, R.J., Cañizares, C.A., Milano, F., et al.: ‘Equivalency of continuation
and optimization methods to determine saddle-node and limit-induced
bifurcations in power systems’, IEEE Trans. Circuits Syst. I, Regul. Pap.,
2009, 56, (1), pp. 210–223

[23] Rao, S.D., Tylavsky, D.J., Feng, Y.: ‘Estimating the saddle-node bifurcation
point of static power systems using the holomorphic embedding method’, Int.
J. Electr. Power Energy Syst., 2017, 84, pp. 1–12

[24] Gao, B., Morison, G., Kundur, P.: ‘Voltage stability evaluation using modal
analysis’, IEEE Trans. Power Syst., 1992, 7, (4), pp. 1529–1542

[25] Morison, G., Gao, B., Kundur, P.: ‘Voltage stability analysis using static and
dynamic approaches’, IEEE Trans. Power Syst., 1993, 8, (3), pp. 1159–1171

[26] Grainger, J.J., Stevenson, W.D., Stevenson, W.D., et al.: ‘Power system
analysis’, 2003

Table 3 Summary for different IEEE cases
IEEE cases L λeig λsvd λs λCPF

14 bus 5, 7, 13, 14 3.579 3.581 3.583 3.584
30 bus 3, 5, 14, 16, 29 2.759 2.760 2.761 2.761
57 bus 5, 10, 13, 56, 57 1.832 1.833 1.830 1.833
118 bus 11, 13, 60, 75, 90 2.967 2.969 2.965 2.969
300 bus 3, 8, 90, 91, 297 1.426 1.425 1.427 1.429
2383 bus 1000, 2370, 2380 1.885 1.886 1.882 1.886

2381, 2382, 2383
 

Table 4 Number of iterations for different IEEE cases
IEEE cases τeig τsvd τs

14 bus 8 6 10
30 bus 7 6 9
57 bus 9 5 10
118 bus 9 5 11
300 bus 8 5 11
2383 bus 9 7 10

 

Table 5 Computational time for different IEEE cases
IEEE cases teig, s tsvd, s ts, s tCPF, s

14 bus 0.0038 0.0030 0.0028 1.1650
30 bus 0.0048 0.0031 0.0039 4.0093
57 bus 0.0070 0.0044 0.0068 5.4375
118 bus 0.0112 0.0056 0.0109 8.3893
300 bus 0.0202 0.0102 0.0211 8.4501
2383 bus 0.2073 0.1630 0.2314 12.740

 

IET Gener. Transm. Distrib., 2020, Vol. 14 Iss. 19, pp. 4207-4216
© The Institution of Engineering and Technology 2020

4215



[27] Canizares, C.A., De Souza, A.C., Quintana, V.H.: ‘Comparison of
performance indices for detection of proximity to voltage collapse’, IEEE
Trans. Power Syst., 1996, 11, (3), pp. 1441–1450

[28] Balamourougan, V., Sidhu, T., Sachdev, M.: ‘Technique for online prediction
of voltage collapse’, IEE Proc., Gener. Transm. Distrib., 2004, 151, (4), pp.
453–460

[29] Bao, L., Huang, Z., Xu, W.: ‘Online voltage stability monitoring using var
reserves’, IEEE Trans. Power Syst., 2003, 18, (4), pp. 1461–1469

[30] Corsi, S.: ‘Voltage control and protection in electrical power systems: from
system components to wide-area control’ (Springer, Germany, 2015)

[31] Begovic, M.M., Phadke, A.G.: ‘Control of voltage stability using sensitivity
analysis’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 114–123

[32] Sinha, A., Hazarika, D.: ‘A comparative study of voltage stability indices in a
power system’, Int. J. Electr. Power Energy Syst., 2000, 22, (8), pp. 589–596

[33] Capitanescu, F., Van Cutsem, T.: ‘Unified sensitivity analysis of unstable or
low voltages caused by load increases or contingencies’, IEEE Trans. Power
Syst., 2005, 20, (1), pp. 321–329

[34] Gubina, F., Strmcnik, B.: ‘Voltage collapse proximity index determination
using voltage phasors approach’, IEEE Trans. Power Syst., 1995, 10, (2), pp.
788–794

[35] Vu, K., Begovic, M.M., Novosel, D., et al.: ‘Use of local measurements to
estimate voltage-stability margin’, IEEE Trans. Power Syst., 1999, 14, (3), pp.
1029–1035

[36] Julian, D., Schulz, R.P., Vu, K., et al.: ‘Quantifying proximity to voltage
collapse using the voltage instability predictor (vip)’. 2000 Power
Engineering Society Summer Meeting (Cat. No. 00CH37134), Seattle,
Washington, USA, 2000, vol. 2, pp. 931–936

[37] Verbič, G., Gubina, F.: ‘Fast voltage-collapse line-protection algorithm based
on local phasors’, IEE Proc., Gener. Transm. Distrib., 2003, 150, (4), pp.
482–486

[38] Smon, I., Verbic, G., Gubina, F.: ‘Local voltage-stability index using
tellegen's theorem’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 1267–1275

[39] Liu, J.-H., Chu, C.-C.: ‘Wide-area measurement-based voltage stability
indicators by modified coupled single-port models’, IEEE Trans. Power Syst.,
2013, 29, (2), pp. 756–764

[40] Kamalasadan, S., Thukaram, D., Srivastava, A.: ‘A new intelligent algorithm
for online voltage stability assessment and monitoring’, Int. J. Electr. Power
Energy Syst., 2009, 31, (2–3), pp. 100–110

[41] Zhou, D.Q., Annakkage, U.D., Rajapakse, A.D.: ‘Online monitoring of
voltage stability margin using an artificial neural network’, IEEE Trans.
Power Syst., 2010, 25, (3), pp. 1566–1574

[42] Trias, A.: ‘The holomorphic embedding load flow method’. 2012 IEEE Power
and Energy Society General Meeting, San Diego, California, USA, 2012, pp.
1–8

[43] Liu, C., Wang, B., Hu, F., et al.: ‘Online voltage stability assessment for load
areas based on the holomorphic embedding method’, IEEE Trans. Power
Syst., 2018, 33, (4), pp. 3720–3734

[44] Ayuev, B.I., Davydov, V.V., Erokhin, P.M.: ‘Fast and reliable method of
searching power system marginal states’, IEEE Trans. Power Syst., 2016, 31,
(6), pp. 4525–4533

[45] Leonardi, B., Ajjarapu, V.: ‘Development of multilinear regression models for
online voltage stability margin estimation’, IEEE Trans. Power Syst., 2010,
26, (1), pp. 374–383

[46] Morison, K., Wang, L., Kundur, P.: ‘Power system security assessment’, IEEE
Power Energy Mag., 2004, 2, (5), pp. 30–39

[47] Overbye, T.J.: ‘Computation of a practical method to restore power flow
solvability’, IEEE Trans. Power Syst., 1995, 10, (1), pp. 280–287

[48] Ejebe, G., Wollenberg, B.: ‘Automatic contingency selection’, IEEE Power
Appar. Syst., 1979, PAS-98, (1), pp. 97–109

[49] Ali, M., Gryazina, E., Turitsyn, K.S.: ‘Methodology for computation of online
voltage stability assessment’. 2018 IEEE Int. Conf. on Environment and
Electrical Engineering and 2018 IEEE Industrial and Commercial Power
Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 2018, pp. 1–5

[50] Abbott, J.P.: ‘An efficient algorithm for the determination of certain
bifurcation points’, J. Comput. Appl. Math., 1978, 4, (1), pp. 19–27

[51] Tate, J.E., Overbye, T.J.: ‘A comparison of the optimal multiplier in polar and
rectangular coordinates’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 1667–
1674

[52] Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J.: ‘MATPOWER:
steady-state operations, planning, and analysis tools for power systems
research and education’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 12–19

[53] Ali, M.: ‘Matlab Implementation of Newton-Corrector Algorithm’, 2019.
Available at https://github.com/mazharalipak/Newton-corrector

[54] Christie, R.: ‘Power systems test case archive’. Electrical Engineering Dept.,
University of Washington, 2000

4216 IET Gener. Transm. Distrib., 2020, Vol. 14 Iss. 19, pp. 4207-4216
© The Institution of Engineering and Technology 2020

https://github.com/mazharalipak/Newton-corrector

